

D

HANDONAL TECHNOLOGI NO

SG Passion Made Possible

OPERATIONAL TECHNOLOGY CYBERSECURITY EXPERT PANEL FORUM 2023

22 - 23 AUGUST 2023

How to turn SECURITY BY DESIGN from myth to reality – A model-based approach

FOREIGN AFFAIRS

Stop Passing the Buck on Cybersecurity

Why Companies Must Build Safety Into Tech Products

By Jen Easterly and Eric Goldstein February 1, 2023

Publication: April 13, 2023

Cybersecurity and Infrastructure Security Agency

NSA | FBI | ACSC | NCSC-UK | CCCS | BSI | NCSC-NL | CERT NZ | NCSC-NZ

Security by Design

myth

reality

Myth 1

Security by Design is a vendors' problem.

security engineering workflow integration mechanism automation engineering workflow

> security-relevant_ design decisions

system to be protected

Reality

Security by Design is a vendors' problem. a common problem of vendors and asset owners

Select all functions that apply to your scope

Q Search

Engineering 🏶 0 🛞 8

 F072 Collection of sensor values and transfer to PLC

 Basis automation

 Image: Collection of sensor values and transfer to PLC

 F073 Physically change process (actuation)

 Administration

 Ø

 Ø

Engineering 🏶 0 🕸 0

F076 Force PLC outputs

Control system

\$0 🕸 0

🏟 o 🕸 o

🗄 F078 Change operating modes

Control system

F084 Sensor calibration

Engineering 🏶 0 🕸 0

F072 Collection of sensor values and transfer to PLC

Select all functions that apply to your scope

Q Search)	
Control syst	Operate and (iem	Observe 🕸 0 🐼 8		
Control system	Video observa em	ation of proces	\$S	
읍 F022 Cloud \$	Offline data a 0 ⊚ 0	nalysis		
Engineering	Bridge PLC va g 🏶 0 🛞 0	alues from con	trol system	
Engineering	Engineering o g 🏟 0 🛞 0	of APC		
Engineering	Engineering o a 🏟 0 🛞 8	of PLC logic		

F020 Operate and Observe

🛱 F033

Integration of field device / PLC into control system
Engineering 🕸 0 🔅 0

Select all functions that apply to your scope

F150 Collection of process information

Select all functions that apply to your scope

Q Search

 F030 Bridge PLC values from control system

 Engineering

 ©

 0

Engineering **\$** 0 🛞 0

☐ F032 Engineering of PLC logic
 Engineering ♥ 0 ◊ 8

뚬i F033

Integration of field device / PLC into control system
Engineering 🏶 0 🛞 0

F034 Optimization / loop tuning of control function
 Engineering \$ 0 \$ 0

F035 Configure sensors and actuators
 Engineering \$ 0 \$ 0

Engineering **©** 0 **©** 0

Select all functions that apply to your scope

Q Search

 F006
 Malware signature distribution

 Security function
 Image: 0 Image:

 F007
 Pasword management

 Security function
 Image: 0
 Image: 0

Administration **\$ 0 0**

 F009
 Certificate management / PKI

 Security function
 Image: 0 Image: 0

 F010 Centralized user and access management

 Administration

 • 0

 • 0

F011 Advanced Process Control

Basis automation 🛛 🤹 0 🐼 0

F012 Safety function

Basis automation 🛛 🏟 0 🗐 6

F006 Malware signature distribution

Select all functions that apply to your scope

Q Search

品 F033

Integration of field device / PLC into control system
Engineering 4 0 🛞 0

 Image: F034 Optimization / loop tuning of control function

 Engineering

 Image: O

 Image: O

F035 Configure sensors and actuators
 Engineering \$ 0 \$ 0

Image: F036 Engineering of safety PLC logic
Engineering ♥ 0 ◊ 0

Engineering 🏶 0 🔅 8

 Image: F072 Collection of sensor values and transfer to PLC

 Basis automation

 Image: Collection of sensor values and transfer to PLC

 Basis automation

 Image: Collection of sensor values and transfer to PLC

 F073 Physically change process (actuation)

 Administration

 Ø

 Ø

F037 Remote maintenance

Cyber-Informed Engineering

System-Theoretic Process Analysis (STPA)

Model-based security by design

2000

Myth 2

Security by design is done by following secure-by-design-principles.

ICSC	Cavoukian	OWASP	solarwinds
stablish context, then lesign system	Proactive not Reactive	Minimise attack surface area	use the right tools
Make compromise lifficult	Secure by Default	Establish secure defaults	use appropiate techniques
Make disruption lifficult	Embedded into Design	Least privilege	follow procedures
Make compromise letection easier	Positive-Sum, not Zero- Sum	Defence in depth	target the SDLC
Reduce the impact of Compromise	End-to-End Security	Fail securely	guarantee Access
	Visibility and Transparency	Don't trust services	Build Systems
	Respect for the User	Separation of duties	Data Center
		Avoid security by obscurity	Clouds
		Keep security simple	Endpoints
		Fix security issues correctly	Identities
			Applications

Marco Joost, Security by Design in Information System Research: A Systematic Literature Research (Bachelor's thesis, 2023)

Reality

Security by design is done by following secure-by-design principles. making (explicit) security decisions during design

To quote HAMLET Act III, Scene III, Line 92 "NO"

https://www.gf5tees.com/products/william-shakespeare-hamlet-no-quote-mens-cotton-poly-tee

MODEL shape your model

DECIDE

make your decisions

Security by design decisions workflow

ELIMINATE FUNCTION

F037 Remote maintenance

CHOOSE PROTOCOL

F150 Collection of process information

CONFIGURE FUNCTION COMPONENTS

F032 Engineering of PLC logic

SP096 Update of PLC logic during operations

SP109 Manual operation

SP093 Key switch for change of operating modes

Function F037 Remote maintenance **Process Data Historian** decisions note Maintenance Cli Service Provider õ proprietary protoco file transfer PLC **Control Server** SFTP proprietary protocol **Control Server** PLC CONFIGURE FUNCTION COMPONENTS CHOOSE PROTOCOLS ELIMINATE FUNCTIONS 1. .

Security by design decision types

NETWORK SEGMENTS

AD

ADD SECURITY COMPONENTS

Security by design decision types

Security by design decision types

2

Function decisions
 Architecture decisions
 Lifecycle decisions

Integration of security into engineering workflow

P&I diagram	•			
Failure effect analysis				
Caus	e-Effect list			
	Process control tag li	st		
System	architecture planning			
	Interface tag list			
	Specificat	ion		
		Image presets for PLCs		
		Faceplates		
		Typicals (PLCs)	PLC logic	
the second se	DALARA MANA	Typicals (control system)	Control system logic	;
			System handbook	
			2.	Test plan
			K- MAL	
			The second second	
				-
Function decisions		et : (3)		
Architecture decisions				
Lifecycle decisions	Integration of	of security into e	engineering w	orkflow

integration of security into engineering worknow

Myth 3

Security by Design is successful if after the design no vulnerabilities emerge.

Reality

Security by Design is successful if after the design no vulnerabilities emerge. all security decisions are traceable by third parties.

Risk-based

Goal-based

Compliancebased

Functional requirement or restriction

And the second s

Reasons for a security decision

Function Diagram

Security Decision Diagram Attack Diagram

Attack scenarios

E009 PLC

SP053 Port locking
 None

- SP077 Read protection of PLC code
 No protection
- O SP093 Key switch for change of operating modes
- 🗌 🖣 None
- Software switch
- SP096 Update of PLC logic during operations
 Enabled
- SP109 Manual operation

🗌 📕 Not possible

 Function Diagram
 Security Decision Diagram
 Attack Diagram

Attack scenario: Malicious change of PLC logic

1 TA0108 Initial Access: T0865 Spearphishing Attachment E006 Engineer (Field) 1

High Consequence Events HCE001 Reactor explodes

Risk-based

Goal-based

Compliancebased

Functional requirement or restriction

A CONTRACTOR OF A CONTRACTOR O

Reasons for a security decision

and a

Security Goals

🖾 SG001

Portable programming device can only be used by authorized personnel

I^{ZI} SG002

Integrity of safety shutdown logic

🖾 SG003

Control system components can only be accessed read-only from external networks

SG004 Pump always stays within safe operating range

Risk-based

Goal-based

Compliancebased

Functional requirement or restriction

A CONTRACTOR OF A CONTRACTOR O

Reasons for a security decision

and a

Security by Design...

... is a vendors' problem.

a common problem of vendors and asset owners.

...is done by following secure by design principles. making explicit security decisions during design.

... is successful if after design no vulnerabilites emerge. all security decisions are traceable by third parties.

🔛 admeritia

MODEL

DECIDE

Security by design project "IDEAS": admeritia.de/ideas

LinkedIn: linkedin.com/in/sarah-fluchs

Blog: fluchsfriction.medium.com

Make security by design a reality.